本站分享:大数据、数据分析师考试认证培训,包括:Python培训Excel培训Matlab培训SPSS培训SAS培训R语言培训Hadoop培训Amos培训Stata培训Eviews培训广告位

数据分析和数据挖掘技术的有效应用

数据挖掘 cdadata 425℃ 0评论

数据分析和数据挖掘技术的有效应用

数据分析和数据挖掘技术的有效应用是数据化运营的基础和技术保障,没有这个基础保障,数据化运营就是空话,就是无本之水,无缘之木。

这里的有效应用包括以下两层含义。

一是企业必须拥有一支能够胜任数据分析和数据挖掘工作的团队和一群出色的数据分析师。一名出色的数据分析师必须是多面手,他不仅要具备统计技能(能熟练使用统计技术和统计工具进行分析挖掘)、数据仓库知识(比如熟悉主流数据库基本技术,可以自助取数,可以有效与数据仓库团队沟通)、数据挖掘技能(熟练掌握主流数据挖掘技术和工具),更重要的是他还要具有针对具体业务的理解能力和快速学习能力,并且要善于与业务方沟通、交流。数据分析挖掘绝不是数据分析师或团队的闭门造车,要想让项目成功应用,必须要自始至终与业务团队并肩作战,从这点来看,业务理解力和沟通交流能力的重要性甚至要远远超过技术层面的能力(诸如统计技能、挖掘技能、数据仓库的技能)。从之前的分析可以看出,一名出色的数据分析师是需要时间、项目经验去磨砺去锻炼成长的,而作为企业来说,如何选择、培养、配备这样一支合格的分析师队伍,才是数据化运营的基础保障。

二是企业的数据化运营只有在分析团队与业务团队协同配合下才可能做出成绩,取得效果。分析团队做出的分析方案、数据模型,必须要在业务应用中得到检验,这不仅要求业务方主观的参与和支持,也要求业务方的团队和员工同样要具有相应的数据化运营能力和水平,运营团队的人员需要具备哪些与数据化运营相关的技能呢?这个问题我们将在第4章阐述。

无论是数据分析团队的专业能力,运营团队的专业能力,还是其他业务团队的专业能力,所体现的都是互联网企业的人才价值,这个人才价值与数据的价值一样,都是属于互联网行业的核心竞争力,正如阿里巴巴集团董事会主席兼CEO马云在多个场合强调的那样,“人才和数据是阿里巴巴集团最大的财富和最强大的核心竞争力”。

转载请注明:数据分析 » 数据分析和数据挖掘技术的有效应用

喜欢 (1)or分享 (0)
发表我的评论
取消评论
表情

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址