本站分享:大数据、数据分析师考试认证培训,包括:Python培训Excel培训Matlab培训SPSS培训SAS培训R语言培训Hadoop培训Amos培训Stata培训Eviews培训广告位

分析:做数据挖掘工作需要具备哪些思维原理?

数据挖掘 cdadata 629℃

分析:做数据挖掘工作需要具备哪些思维原理?

1、数据核心原理从“流程”核心转变为“数据”核心

大数据时代,计算模式也发生了转变,从“流程”核心转变为“数据”核心。Hadoop体系的分布式计算框架已经是“数据”为核心的范式。非结构化数据及分析需求,将改变IT系统的升级方式:从简单增量到架构变化。

大数据下的新思维——计算模式的转变。

例如:IBM将使用以数据为中心的设计,目的是降低在超级计算机之间进行大量数据交换的必要性。大数据下,云计算找到了破茧重生的机会,在存储和计算上都体现了数据为核心的理念。大数据和云计算的关系:云计算为大数据提供了有力的工具和途径,大数据为云计算提供了很有价值的用武之地。而大数据比云计算更为落地,可有效利用已大量建设的云计算资源,最后加以利用.

说明:用数据核心思维方式思考问题,解决问题。以数据为核心,反映了当下IT产业的变革,数据成为人工智能的基础,也成为智能化的基础,数据比流程更重要,数据库、记录数据库,都可开发出深层次信息。云计算机可以从数据库、记录数据库中搜索出你是谁,你需要什么,从而推荐给你需要的信息。

 2、数据价值原理由功能式价值转变为数据式价值

大数据真正有意思的是数据变得在线了,这个恰恰是互联网的特点。非互联网时期的产品,功能一定是它的价值,今天互联网的产品,数据一定是它的价值。例如:大数据的真正价值在于创造,在于填补无数个还未实现过的空白。有人把数据比喻为蕴藏能量的煤矿,煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。

与此类似,大数据并不在“大”,而在于“有用”,价值含量、挖掘成本比数量更为重要。不管大数据的核心价值是不是预测,但是基于大数据形成决策的模式已经为不少的企业带来了盈利和声誉。

美国有一家创新企业Decide.com,它可以帮助人们做购买决策,告诉消费者什么时候买什么产品,什么时候买最便宜,预测产品的价格趋势,这家公司背后的驱动力就是大数据。他们在全球各大网站上搜集数以十亿计的数据,然后帮助数以十万计的用户省钱,为他们的采购找到最好的时间,降低交易成本,为终端的消费者带去更多价值。

在这类模式下,尽管一些零售商的利润会进一步受挤压,但从商业本质上来讲,可以把钱更多地放回到消费者的口袋里,让购物变得更理性,这是依靠大数据催生出的一项全新产业。这家为数以十万计的客户省钱的公司,在几个星期前,被eBay以高价收购。

SWIFT是全球最大的支付平台,在该平台上的每一笔交易都可以进行大数据的分析,他们可以预测一个经济体的健康性和增长性。比如,该公司现在为全球性客户提供经济指数,这又是一个大数据服务。,定制化服务的关键是数据。《大数据时代》的作者维克托·迈尔·舍恩伯格认为,大量的数据能够让传统行业更好地了解客户需求,提供个性化的服务。

说明:用数据价值思维方式思考问题,解决问题。信息总量的变化导致了信息形态的变化,量变引发了质变,最先经历信息爆炸的学科,如天文学和基因学,创造出了“大数据”这个概念。如今,这个概念几乎应用到了所有人类致力于发展的领域中。从功能为价值转变为数据为价值,说明数据和大数据的价值在扩大,数据为“王”的时代出现了。数据被解释是信息,信息常识化是知识,所以说数据解释、数据分析能产生价值。

3、全样本原理从抽样转变为需要全部数据样本

需要全部数据样本而不是抽样,你不知道的事情比你知道的事情更重要,但如果现在数据足够多,它会让人能够看得见、摸得着规律。数据这么大、这么多,所以人们觉得有足够的能力把握未来,对不确定状态的一种判断,从而做出自己的决定。这些东西我们听起来都是非常原始的,但是实际上背后的思维方式,和我们今天所讲的大数据是非常像的。

举例:在大数据时代,无论是商家还是信息的搜集者,会比我们自己更知道你可能会想干什么。现在的数据还没有被真正挖掘,如果真正挖掘的话,通过信用卡消费的记录,可以成功预测未来5年内的情况。统计学里头最基本的一个概念就是,全部样本才能找出规律。为什么能够找出行为规律?一个更深层的概念是人和人是一样的,如果是一个人特例出来,可能很有个性,但当人口样本数量足够大时,就会发现其实每个人都是一模一样的。

说明:用全数据样本思维方式思考问题,解决问题。从抽样中得到的结论总是有水分的,而全部样本中得到的结论水分就很少,大数据越大,真实性也就越大,因为大数据包含了全部的信息。

 4、关注效率原理由关注精确度转变为关注效率

关注效率而不是精确度,大数据标志着人类在寻求量化和认识世界的道路上前进了一大步,过去不可计量、存储、分析和共享的很多东西都被数据化了,拥有大量的数据和更多不那么精确的数据为我们理解世界打开了一扇新的大门。大数据能提高生产效率和销售效率,原因是大数据能够让我们知道市场的需要,人的消费需要。

大数据让企业的决策更科学,由关注精确度转变为关注效率的提高,大数据分析能提高企业的效率。

 例如:在互联网大数据时代,企业产品迭代的速度在加快。三星、小米手机制造商半年就推出一代新智能手机。利用互联网、大数据提高企业效率的趋势下,快速就是效率、预测就是效率、预见就是效率、变革就是效率、创新就是效率、应用就是效率。

竞争是企业的动力,而效率是企业的生命,效率低与效率高是衡量企来成败的关键。一般来讲,投入与产出比是效率,追求高效率也就是追求高价值。手工、机器、自动机器、智能机器之间效率是不同的,智能机器效率更高,已能代替人的思维劳动。智能机器核心是大数据制动,而大数据制动的速度更快。在快速变化的市场,快速预测、快速决策、快速创新、快速定制、快速生产、快速上市成为企业行动的准则,也就是说,速度就是价值,效率就是价值,而这一切离不开大数据思维

说明:用关注效率思维方式思考问题,解决问题。大数据思维有点像混沌思维,确定与不确定交织在一起,过去那种一元思维结果,已被二元思维结果取代。过去寻求精确度,现在寻求高效率;过去寻求因果性,现在寻求相关性;过去寻找确定性,现在寻找概率性,对不精确的数据结果已能容忍。只要大数据分析指出可能性,就会有相应的结果,从而为企业快速决策、快速动作、创占先机提高了效率。

转载请注明:数据分析 » 分析:做数据挖掘工作需要具备哪些思维原理?

喜欢 (3)or分享 (0)