本站分享:AI、大数据、数据分析师培训认证考试,包括:Python培训Excel培训Matlab培训SPSS培训SAS培训R语言培训Hadoop培训Amos培训Stata培训Eviews培训

SAS、spss进行Durbin-Watson检验

sas培训 cdadata 10421℃

SAS、spss进行Durbin-Watson检验

关键词:durbin-watson检验 matla,durbin watson检验spss

在sas中,如何对非线性方程进行Durbin-Watson 检验,以及画出检验图。


1.首先要知道你用的哪一个SAS子程序。
2.如果是PROC NLIN,那么非常遗憾,它没有现成的DW统计量,但是你可以在OUTPUT选项中在输出数据集里面输出残差。
3.DW实际上是对残差做一阶自相关判断,因此你完全可以根据公式用SAS中的DATA步来完成代码开发,参考代码如下:
data nkwilling;
do i=1 to 100;
e=normal(0);
output;
end;
run;

data DW;
set nkwilling end=last;
e_lag=lag(e);
e_dif=sum(e,-e_lag);
t1=e_dif*e_dif;
t2=e*e;
if _n_=1 then do;dw1=t1;dw2=t2;end;
else do;dw1+t1;dw2+t2;end;
if last then dw=dw1/dw2;
run;
再参考DW有关自相关的范围,我记得好像是0-4,作出判断。
匆忙写的,你再参考有关书籍做一下修改。


sas 和spss都能做
检验图就是残差图
以预测值Y为横轴,以y与预测值Y之间的误差et为纵轴(或学生化残差与拟和值或一个自变量),绘制残差的散点图。如果散点呈现出明显的规律性,则认为存在自相关性或者非线性或者非常数方差的问题。

DW是0<D<4,统计学意义如下:
①当残差与自变量互为独立时,D=2 或 DW 越接近2,判断无自相关性把握越大。
②当相邻两点的残差为正相关时,D<2,DW 越接近于0,正自相关性越强。
③当相邻两点的残差为负相关时,D>2,DW 越接近于4,负自相关性越强。
判断。根据样本容量n 和解释变量的数目p 查DW 分布表,得下临界值L D 和上临界值U D ,
并依下列准则判断扰动项的自相关情形。
(1)如果0<DW< L D ,则拒绝零假设,扰动项存在一阶正自相关。DW 越接近于0,正自相关
性越强。
(2)如果L D <DW< U D ,则无法判断是否有自相关。
(3)如果U D <DW<4- U D ,则接受零假设,扰动项不存在一阶正自相关。DW 越接近2,判断
无自相关性把握越大。
(4)如果4- U D <DW<4- L D ,则无法判断是否有自相关。
(5) 如果4- L D <DW<4,则拒绝零假设,扰动项存在一阶负自相关。DW 越接近于4,负自
相关性越强。


检验不难,据不完全统计,PROC REG/AUTOREG/MODEL都有选项输出统计量和p-值。你要是非线性的,可以用PROC MODEL。其实Durbin-Watson检验的统计量也可以利用残差根据公式手工算。

但是检验图是个什么概念不才就一点也不懂了,一个模型不就只有一个Durbin-Watson值吗?


option nocenter;
dm ‘log;clear;output;clear’;

proc import datafile=”c:\example.xls” replace
out=one;
getnames=yes;
data one;  set one;
proc nlin data=one;
parms b1=0.2 b2=-0.2 b3=-0.4 ;
AOld = a1;anew=a2;
hdold=hd1;temp = AOld / ANew;
do anew = (1+a1) to a2 by 1;
HdNew = exp(temp*log(hdold)+(1-temp)*(b1+b2/aold+b3*hdold));                                   AOld = ANew;
hdold=hdnew;
end;
model hd2 = HdNew;
output out=two predicted=hd2hat;

我应该如何在上面代码中添加Durbin-Watson检验呢?

用proc reg就好了,在option那里加一个“DW

转载请注明:数据分析 » SAS、spss进行Durbin-Watson检验

喜欢 (1)or分享 (0)