本站分享:大数据、数据分析师考试认证培训,包括:Python培训Excel培训Matlab培训SPSS培训SAS培训R语言培训Hadoop培训Amos培训Stata培训Eviews培训广告位

stata回归结果分析_stata回归结果怎么看_stata回归结果解释

stata培训 cdadata 2486℃ 0评论

stata回归结果分析

关键词: stata回归结果怎么看,stata回归结果解释,stata回归结果

huigui

刚刚学习sata软件,建立了一个受教育年限、工作起薪以及性别对工资收入的影响模型,得出以下结果,不知道模型分析的结果应该怎么写呢?

求帮助:

经典回答1:
(1)由于F检验的P值为0,模型总体是统计显著的,模型较好
(2)R方接近80%,说明模型的拟合度很高,模型较好
(3)教育年限变量和工资具有统计显著的正相关关系(原因:t检验的P值为0),其他因素不变,教育年限每增加1年,工资平均增长990元。
(4)工作起薪变量和工资具有统计显著的正相关关系(原因:t检验的P值为0),其他因素不变,工作起薪每增加1元,工资平均增长1.6元。
(5)性别变量和工资在5%的显著性下相关(我不知道你性别变量怎么设的,一般是男=1,女=0,我按这个写的,如果不是请告知),男性比女性在其他因素不变的情况下平均多1593元工资。

经典回答2:

上面左侧的表是用来计算下面数据的,分析过程中基本不用提到

右侧从上往下

1.Number of obs 是样本容量

2.F是模型的F检验值,用来计算下面的P>F

3.P>F是模型F检验落在小概率事件区间的概率,你的模型置信水平是0.05,也就是说P>F值如果大于0.05,那么模型就有足够高的概率落在F函数的小概率区间,简单的说,如果这个值大于0.05你这个模型设定有就问题,要重新设定模型

4.R-squard也就是模型的R²值,拟合优度,这个数越大你的模型和实际值的拟合度就越高,模型越好

5.Adj .R-squard 这个是调整过的R²,跟上面R²差不多,关注一个就行了

6.Root mse 是残差标准差,值越大残差波动越大,模型越不稳定(这个值我分析的时候一般不太关注)

下侧表格

  1. coef.是估计得到的系数值
  2. std.err是标准差,这个数有重要意义,一般论文里都要求把标准差表示出来,这个数越大模型越不精确,越小越好
  3. t是t检验值,t检验是用来检验某个系数是否显著区别于0的,在分析中这个值一般没什么意义,主要用来计算P>t
  4. P>t,这个值是观察某个解释变量是否有效的主要参数,还是对于你设置的0.05的置信水平,如果这个值大于0.05说明对应的解释变量不能通过t检验,在模型中是不合格的,就需要作调整
  5. 后面两个就是置信区间了,95%的置信区间,一般在论文中意义也不大

然后分析就选取你有用的参数做了,我学经济的,一般最有用的参数就是P>F,coef,P>t,se等等,还有BIC,VIF这些,在简单回归里这些是不会计算的,需要其他命令

转载请注明:数据分析 » stata回归结果分析_stata回归结果怎么看_stata回归结果解释

喜欢 (5)or分享 (0)
发表我的评论
取消评论
表情

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址
(1)个小伙伴在吐槽
  1. stata回归结果分析_stata回归结果怎么看_stata回归结果解释,终于找到满意的解析了
    cdadata2016-03-29 09:34 回复