本站分享:大数据、数据分析师考试认证培训,包括:Python培训Excel培训Matlab培训SPSS培训SAS培训R语言培训Hadoop培训Amos培训Stata培训Eviews培训广告位

模型建立——时间序列 eviews协整检验(EG两步法(Engle-Granger)) !

eviews培训 cdadata 1436℃ 0评论

模型建立——时间序列 eviews协整检验(EG两步法(Engle-Granger)) !

关键词:englegranger协整检验 engle granger两步法 engle granger  eviews granger检验 eg两步法协整检验 eg两步法协整检验操作

1.首先,需要两列时间序列数据,将他们命名为future4,future5,存入eviews。

2.对两组数据取对数,得新的数据:P4=log(future4),P5=log(future5)。可在eviews中点击Genr输入p4=log(future4)可自动产生对数数列。

为何取对数?:可以部分消除异方差的问题,另外,其差分可以表示发展速度的对数,也可以消除序列相关的问题.有时候要看经济意义!取对数也可减少数据的波动,在高频数据中尤是。变量取对数是为了消除异方差,系数也是弹性系数,主要是为了消除金融时间序列的异方差现象,可以将可能的非线性关系转化为线性关系,减少变量的极端值、非正态分布以及异方差性。

针对上面提到的非线性关系转化为线性关系,做进一步的解释:经济序列通常做对数化处理,因为log有很多优良特性。如取对数,很容易操作,正如上面所说,输入log(x)就可以产生原数列相应的对数数列。还有一些关系式如log(a*b)=log(a)+log(b),log(a^2)=2*log(a),这种特性可以很容易的把函数之间的关系线性化。加上log,常可以使得经济数列变得更容易处理。)
3.对两个时间序列分别做ADF检验。
1.eviews中选取时间序列P4,右键=》open。在新的窗口中点击 view=》unit root test。
2.ADF检验需要对3个模型依次检验,所以在unit root test窗口中先①选:level、trend and

模型建立——时间序列 eviews协整检验(EG两步法(Engle-Granger))

intercept。然后确认=》得到  

第一行是所得t值,下面3行是临界值。t=-2.0665>临界值,因此非平稳。因此要继续检验②:level、intercept,假设还是非平稳。继续检验③:level none。假设还是非平稳,则做一阶差分,即将level换成1st difference,将之前①②③从新来过,一旦t<临界值就可以停止了。若level时,t值均大于临界值,则为非平稳序列。若1st difference的一阶差分时,变为平稳的,就是1阶单整,记为I(1),依次类推。

4.协整检验

    得出两个相同的单整时间序列,P5 说明两时间序列存在接下来存在协整的可能。否则就不可能协整。

    下面采用EG(Engle-Granger)两步法进行协整检验:

EG两步法,分两步。第一步,计算非均衡误差et,第二步,检验单整性。et为稳定序列则为协整。

操作:选取P4  ,P5  然后右键=》open=》as group。新窗口中点击proc=》make equation=》确定。得到等式。然后在新窗口中点击proc=》make residual series=》ok。从而得到残差项时间序列et。接着对该序列进行adf检验(如上所述)。若残差项平稳,则存在(1,1)阶协整。如果et为1阶单整,则变量Y,X为(2,1)阶协整。

2012年4月13日补充:需要注意的是:这里的DF或ADF检验是针对协整计算的残差项而非真正的非均衡误差,因此拒绝零假设的机会比实际情形大,所以临界值并非EVIEWS自带的参考值。参考临界值如下:

模型建立——时间序列 eviews协整检验(EG两步法(Engle-Granger))

另外,本文参照了高等教育出版社《计量经济学》文中并未提到EG两步法的第二步何时不存在协整。因此建议,可以采用jj检验,也就是在数据open as group后点击view==》点击cointegration test将直接显示协整检验的结果。图片如下,可以看到,红线处指出,是否存在协整关系。系数大小等信息都会在结果中显示出来。

模型建立——时间序列 eviews协整检验(EG两步法(Engle-Granger))

协整关系存在后,就可以建立误差修正模型(ECM)了。

为什么呢?因为Engle和Granger 1987年提出Granger表述定理:如果变量X与Y是协整的,他们之间的短期非均衡关系总能由一个误差修正模型表述。

但是多元的如何,这里还未了解。

回归模型中对变量取对数的作用是什么

问题是:在Include in test equation中,是否含有常数项、常数和趋势项、或二者都不包含,我应该选哪个?

回答说:

序列有非0均值,但没有时间趋势,选常数项;
序列随时间变化有上升或下降趋势,选常数和趋势项‘
序列在0均值上下波动,选二者都不包含。
你可以看一下易丹辉老师的《eviews与统计分析》

————————————————————————————————

另外,个人现有一点不明,即ADF检验时,unit root test中,lag length这里应该怎么选,原因是什么?来龙去脉还未了解。

转载请注明:数据分析 » 模型建立——时间序列 eviews协整检验(EG两步法(Engle-Granger)) !

喜欢 (3)or分享 (0)
发表我的评论
取消评论
表情

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址